Unit Two: Vector Calculus

(Reference: Thomas' Calculus, Twelfth Edition)

2.1 Vectors

A quantity such as force, displacement, or velocity is called a vector and is represented by a directed line segment.

DEFINITIONS The vector represented by the directed line segment $\overrightarrow{A B}$ has initial point A and terminal point B and its length is denoted by $|\overrightarrow{A B}|$. Two vectors are equal if they have the same length and direction.

If \mathbf{v} is a two-dimensional vector in the plane equal to the vector with initial point at the origin and terminal point $\left(v_{1}, v_{2}\right)$, then the component form of \mathbf{v} is

$$
\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle
$$

If \mathbf{v} is a three-dimensional vector equal to the vector with initial point at the origin and terminal point $\left(v_{1}, v_{2}, v_{3}\right)$, then the component form of \mathbf{v} is

$$
\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle
$$

The magnitude or length of the vector $\mathbf{v}=\overrightarrow{P Q}$ is the nonnegative number

$$
|\mathbf{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

(see Figure 12.10).

The only vector with length 0 is the zero vector $\mathbf{0}=\langle 0,0\rangle$ or $\mathbf{0}=\langle 0,0,0\rangle$. This vector is also the only vector with no specific direction.

EXAMPLE 1 Find the (a) component form and (b) length of the vector with initial point $P(-3,4,1)$ and terminal point $Q(-5,2,2)$.

Solution

(a) The standard position vector \mathbf{v} representing $\overrightarrow{P Q}$ has components

$$
\begin{gathered}
v_{1}=x_{2}-x_{1}=-5-(-3)=-2, \quad v_{2}=y_{2}-y_{1}=2-4=-2 \\
v_{3}=z_{2}-z_{1}=2-1=1
\end{gathered}
$$

The component form of $\overrightarrow{P Q}$ is

$$
\mathbf{v}=\langle-2,-2,1\rangle .
$$

(b) The length or magnitude of $\mathbf{v}=\overrightarrow{P Q}$ is

$$
|\mathbf{v}|=\sqrt{(-2)^{2}+(-2)^{2}+(1)^{2}}=\sqrt{9}=3
$$

2.2 Vector Algebra Operations

A scalar is simply a real number. Scalars can be positive, negative, or zero and are used to "scale" a vector by multiplication.

DEFINITIONS \quad Let $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ be vectors with k a scalar.

Addition:

$$
\mathbf{u}+\mathbf{v}=\left\langle u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right\rangle
$$

Scalar multiplication: $\quad k \mathbf{u}=\left\langle k u_{1}, k u_{2}, k u_{3}\right\rangle$

Note: $|k \mathbf{u}|=k|\mathbf{u}|$

(a)

(b)
(a) Geometric interpretation of the vector sum. (b) The parallelogram law of vector addition.

EXAMPLE 2 Let $\mathbf{u}=\langle-1,3,1\rangle$ and $\mathbf{v}=\langle 4,7,0\rangle$. Find the components of
(a) $2 \mathbf{u}+3 \mathbf{v}$
(b) $\mathbf{u}-\mathbf{v}$
(c) $\left|\frac{1}{2} \mathbf{u}\right|$.

Solution
(a) $2 \mathbf{u}+3 \mathbf{v}=2\langle-1,3,1\rangle+3\langle 4,7,0\rangle=\langle-2,6,2\rangle+\langle 12,21,0\rangle=\langle 10,27,2\rangle$
(b) $\mathbf{u}-\mathbf{v}=\langle-1,3,1\rangle-\langle 4,7,0\rangle=\langle-1-4,3-7,1-0\rangle=\langle-5,-4,1\rangle$
(c) $\left|\frac{1}{2} \mathbf{u}\right|=\left|\left\langle-\frac{1}{2}, \frac{3}{2}, \frac{1}{2}\right\rangle\right|=\sqrt{\left(-\frac{1}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}=\frac{1}{2} \sqrt{11}$.

Properties of Vector Operations

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors and a, b be scalars.

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
2. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
3. $\mathbf{u}+\mathbf{0}=\mathbf{u}$
4. $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
5. $0 \mathbf{u}=0$
6. $1 \mathbf{u}=\mathbf{u}$
7. $a(b \mathbf{u})=(a b) \mathbf{u}$
8. $a(\mathbf{u}+\mathbf{v})=a \mathbf{u}+a \mathbf{v}$
9. $(a+b) \mathbf{u}=a \mathbf{u}+b \mathbf{u}$

2.3 Unit Vectors

A vector \mathbf{v} of length 1 is called a unit vector. The standard unit vectors are

$$
\mathbf{i}=\langle 1,0,0\rangle, \quad \mathbf{j}=\langle 0,1,0\rangle, \quad \text { and } \quad \mathbf{k}=\langle 0,0,1\rangle
$$

Any vector $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ can be written as a linear combination of the standard unit vectors as follows:

$$
\begin{aligned}
\mathbf{v} & =\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left\langle v_{1}, 0,0\right\rangle+\left\langle 0, v_{2}, 0\right\rangle+\left\langle 0,0, v_{3}\right\rangle \\
& =v_{1}\langle 1,0,0\rangle+v_{2}\langle 0,1,0\rangle+v_{3}\langle 0,0,1\rangle \\
& =v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k} .
\end{aligned}
$$

We call the scalar (or number) v_{1} the i-component of the vector \mathbf{v}, v_{2} the \mathbf{j}-component, and v_{3} the k-component. In component form, the vector from $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ to $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
{\stackrel{\rightharpoonup}{P_{1} P}}_{2}=\left(x_{2}-x_{1}\right) \mathbf{i}+\left(y_{2}-y_{1}\right) \mathbf{j}+\left(z_{2}-z_{1}\right) \mathbf{k}
$$

$\mathbf{v} /|\mathbf{v}|$ is a unit vector in the direction of \mathbf{v}, and called the direction of the nonzero vector \mathbf{v}.

EXAMPLE 3 Find a unit vector \mathbf{u} in the direction of the vector from $P_{1}(1,0,1)$ to $P_{2}(3,2,0)$.

Solution We divide ${\overrightarrow{P_{1} P}}_{2}$ by its length:

The unit vector \mathbf{u} is the direction of ${\overrightarrow{P_{1} P}}_{2}$.

2.4 Midpoint of a Line Segment

The midpoint M of the line segment joining points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is the point

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)
$$

Example: The midpoint of the segment joining $P_{1}(3,-2,0)$ and $P_{2}(7,4,4)$ is

$$
\left(\frac{3+7}{2}, \frac{-2+4}{2}, \frac{0+4}{2}\right)=(5,1,2)
$$

EXAMPLE

Distance Between Two Points

Find the distance between $(2,-3,6)$ and $(-1,-7,4)$.
SOLUTION Choosing P_{2} as $(2,-3,6)$ and P_{1} as $(-1,-7,4)$, the distance (d) is:

$$
d=\sqrt{(2-(-1))^{2}+(-3-(-7))^{2}+(6-4)^{2}}=\sqrt{29}
$$

$$
\equiv
$$

$$
\begin{aligned}
& \vec{P}_{P_{1}}=(3-1) \mathbf{i}+(2-0) \mathbf{j}+(0-1) \mathbf{k}=2 \mathbf{i}+2 \mathbf{j}-\mathbf{k} \\
& \left|\overrightarrow{P_{1} P_{2}}\right|=\sqrt{(2)^{2}+(2)^{2}+(-1)^{2}}=\sqrt{4+4+1}=\sqrt{9}=3 \\
& \mathbf{u}=\frac{\stackrel{\rightharpoonup}{P_{1} P_{2}}}{\left|\stackrel{\rightharpoonup}{P_{1} P_{2}}\right|}=\frac{2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}}{3}=\frac{2}{3} \mathbf{i}+\frac{2}{3} \mathbf{j}-\frac{1}{3} \mathbf{k} .
\end{aligned}
$$

Exercises 12.2

Vectors in the Plane
In Exercises 1-8, let $\mathbf{u}=\langle 3,-2\rangle$ and $\mathbf{v}=\langle-2,5\rangle$. Find the (a) component form and (b) magnitude (length) of the vector.

1. $3 \mathbf{u}$
2. -2 v
3. $u+v$
4. $u-v$
5. $2 \mathbf{u}-3 \mathbf{v}$
6. $-2 \mathbf{u}+5 \mathbf{v}$
7. $\frac{3}{5} \mathbf{u}+\frac{4}{5} \mathbf{v}$
8. $-\frac{5}{13} \mathbf{u}+\frac{12}{13} \mathbf{v}$

In Exercises 9-16, find the component form of the vector.
9. The vector $\overrightarrow{P Q}$, where $P=(1,3)$ and $Q=(2,-1)$
10. The vector $\overrightarrow{O P}$ where O is the origin and P is the midpoint of segment $R S$, where $R=(2,-1)$ and $S=(-4,3)$
11. The vector from the point $A=(2,3)$ to the origin
12. The sum of $\overrightarrow{A B}$ and $\overrightarrow{C D}$, where $A=(1,-1), B=(2,0)$, $C=(-1,3)$, and $D=(-2,2)$
13. The unit vector that makes an angle $\theta=2 \pi / 3$ with the positive x-axis
14. The unit vector that makes an angle $\theta=-3 \pi / 4$ with the positive x-axis
15. The unit vector obtained by rotating the vector $\langle 0,1\rangle 120^{\circ}$ counterclockwise about the origin
16. The unit vector obtained by rotating the vector $\langle 1,0\rangle 135^{\circ}$ counterclockwise about the origin

Vectors in Space

In Exercises 17-22, express each vector in the form $\mathbf{v}=v_{1} \mathbf{i}+$ $v_{2} \mathbf{j}+v_{3} \mathbf{k}$.
17. ${\overrightarrow{P_{1} P_{2}}}_{2}$ if P_{1} is the point $(5,7,-1)$ and P_{2} is the point $(2,9,-2)$
18. ${\overrightarrow{P_{1} P_{2}}}_{2}$ if P_{1} is the point $(1,2,0)$ and P_{2} is the point $(-3,0,5)$
19. $\overrightarrow{A B}$ if A is the point $(-7,-8,1)$ and B is the point $(-10,8,1)$
20. $\overrightarrow{A B}$ if A is the point $(1,0,3)$ and B is the point $(-1,4,5)$
21. $5 \mathbf{u}-\mathbf{v}$ if $\mathbf{u}=\langle 1,1,-1\rangle$ and $\mathbf{v}=\langle 2,0,3\rangle$
22. $-2 \mathbf{u}+3 \mathbf{v}$ if $\mathbf{u}=\langle-1,0,2\rangle$ and $\mathbf{v}=\langle 1,1,1\rangle$

Geometric Representations

In Exercises 23 and 24, copy vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} head to tail as needed to sketch the indicated vector.
23.

a. $\mathbf{u}+\mathbf{v}$
b. $\mathbf{u}+\mathbf{v}+\mathbf{w}$
c. $\mathbf{u}-\mathrm{v}$
d. $\mathbf{u}-\mathrm{w}$
24.

a. $\mathbf{u}-\mathrm{v}$
b. $\mathbf{u}-\mathbf{v}+\mathbf{w}$
c. $2 \mathbf{u}-\mathbf{v}$
d. $\mathbf{u}+\mathbf{v}+\mathbf{w}$

Length and Direction

In Exercises 25-30, express each vector as a product of its length and direction.
25. $2 \mathbf{i}+\mathbf{j}-2 k$
26. $9 \mathbf{i}-2 \mathbf{j}+6 \mathbf{k}$
27. 5 k
28. $\frac{3}{5} \mathbf{i}+\frac{4}{5} \mathbf{k}$
29. $\frac{1}{\sqrt{6}} \mathbf{i}-\frac{1}{\sqrt{6}} \mathbf{j}-\frac{1}{\sqrt{6}} \mathbf{k}$
30. $\frac{\mathbf{i}}{\sqrt{3}}+\frac{\mathbf{j}}{\sqrt{3}}+\frac{\mathbf{k}}{\sqrt{3}}$
31. Find the vectors whose lengths and directions are given. Try to do the calculations without writing.

Length	Direction
a. 2	\mathbf{i}
b. $\sqrt{3}$	$-\mathbf{k}$
c. $\frac{1}{2}$	$\frac{3}{5} \mathbf{j}+\frac{4}{5} \mathbf{k}$
d. 7	$\frac{6}{7} \mathbf{i}-\frac{2}{7} \mathbf{j}+\frac{3}{7} \mathbf{k}$

32. Find the vectors whose lengths and directions are given. Try to do the calculations without writing.

Length Direction
a. $7 \quad-$ j
b. $\begin{aligned} \sqrt{2} & -\frac{3}{5} \mathbf{i}-\frac{4}{5} \mathbf{k}\end{aligned}$
c. $\frac{13}{12} \quad \frac{3}{13} \mathbf{i}-\frac{4}{13} \mathbf{j}-\frac{12}{13} \mathbf{k}$
d. $a>0 \quad \frac{1}{\sqrt{2}} \mathbf{i}+\frac{1}{\sqrt{3}} \mathbf{j}-\frac{1}{\sqrt{6}} \mathbf{k}$
33. Find a vector of magnitude 7 in the direction of $\mathbf{v}=12 \mathbf{i}-5 \mathbf{k}$.
34. Find a vector of magnitude 3 in the direction opposite to the direction of $\mathbf{v}=(1 / 2) \mathbf{i}-(1 / 2) \mathbf{j}-(1 / 2) \mathbf{k}$.

Direction and Midpoints

In Exercises 35-38, find
a. the direction of $\overrightarrow{P_{1} P_{2}}$ and
b. the midpoint of line segment $P_{1} P_{2}$.
35. $P_{1}(-1,1,5) \quad P_{2}(2,5,0)$
36. $P_{1}(1,4,5) \quad P_{2}(4,-2,7)$
37. $P_{1}(3,4,5) \quad P_{2}(2,3,4)$
38. $P_{1}(0,0,0) \quad P_{2}(2,-2,-2)$
39. If $\overrightarrow{A B}=\mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$ and B is the point $(5,1,3)$, find A.
40. If $\overrightarrow{A B}=-7 \mathbf{i}+3 \mathbf{j}+8 \mathbf{k}$ and A is the point $(-2,-3,6)$, find B.

Theory and Applications

41. Linear combination Let $\mathbf{u}=2 \mathbf{i}+\mathbf{j}, \mathbf{v}=\mathbf{i}+\mathbf{j}$, and $\mathbf{w}=$ $\mathbf{i}-\mathbf{j}$. Find scalars a and b such that $\mathbf{u}=a \mathbf{v}+b \mathbf{w}$.
42. Linear combination Let $\mathbf{u}=\mathbf{i}-2 \mathbf{j}, \mathbf{v}=2 \mathbf{i}+3 \mathbf{j}$, and $\mathbf{w}=$ $\mathbf{i}+\mathbf{j}$. Write $\mathbf{u}=\mathbf{u}_{1}+\mathbf{u}_{2}$, where \mathbf{u}_{1} is parallel to \mathbf{v} and \mathbf{u}_{2} is parallel to w. (See Exercise 41.)
43. Velocity An airplane is flying in the direction 25° west of north at $800 \mathrm{~km} / \mathrm{h}$. Find the component form of the velocity of the airplane, assuming that the positive x-axis represents due east and the positive y-axis represents due north.
44. (Continuation of Example 8.) What speed and direction should the jetliner in Example 8 have in order for the resultant vector to be 500 mph due east?
45. Consider a $100-\mathrm{N}$ weight suspended by two wires as shown in the

46. Consider a $50-\mathrm{N}$ weight suspended by two wires as shown in the accompanying figure. If the magnitude of vector \mathbf{F}_{1} is 35 N , find angle α and the magnitude of vector \mathbf{F}_{2}.

47. Consider a w - N weight suspended by two wires as shown in the accompanying figure. If the magnitude of vector \mathbf{F}_{2} is 100 N , find w and the magnitude of vector \mathbf{F}_{1}.

48. Consider a $25-\mathrm{N}$ weight suspended by two wires as shown in the accompanying figure. If the magnitudes of vectors \mathbf{F}_{1} and \mathbf{F}_{2} are both 75 N , then angles α and β are equal. Find α.

49. Location A bird flies from its nest 5 km in the direction 60° north of east, where it stops to rest on a tree. It then flies 10 km in the direction due southeast and lands atop a telephone pole. Place an $x y$-coordinate system so that the origin is the bird's nest, the x-axis points east, and the y-axis points north.
a. At what point is the tree located?
b. At what point is the telephone pole?
50. Use similar triangles to find the coordinates of the point Q that divides the segment from $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ to $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ into two lengths whose ratio is $p / q=r$.
51. Medians of a triangle Suppose that A, B, and C are the corner points of the thin triangular plate of constant density shown here.
a. Find the vector from C to the midpoint M of side $A B$.
c. Find the coordinates of the point in which the medians of $\triangle A B C$ intersect. According to Exercise 17, Section 6.6, this point is the plate's center of mass.

52. Find the vector from the origin to the point of intersection of the medians of the triangle whose vertices are

$$
A(1,-1,2), \quad B(2,1,3), \quad \text { and } \quad C(-1,2,-1)
$$

53. Let $A B C D$ be a general, not necessarily planar, quadrilateral in space. Show that the two segments joining the midpoints of opposite sides of $A B C D$ bisect each other. (Hint: Show that the segments have the same midpoint.)
54. Vectors are drawn from the center of a regular n-sided polygon in the plane to the vertices of the polygon. Show that the sum of the vectors is zero. (Hint: What happens to the sum if you rotate the polygon about its center?)
55. Suppose that A, B, and C are vertices of a triangle and that a, b, and c are, respectively, the midpoints of the opposite sides. Show that $\overrightarrow{A a}+\overrightarrow{B b}+\overrightarrow{C c}=0$.
56. Unit vectors in the plane Show that a unit vector in the plane can be expressed as $\mathbf{u}=(\cos \theta) \mathbf{i}+(\sin \theta) \mathbf{j}$, obtained by rotating i through an angle θ in the counterclockwise direction. Explain why this form gives every unit vector in the plane.

2.5 The Dot Product

Dot products are also called inner or scalar products because the product results in a scalar, not a vector. The angle θ between two nonzero vectors $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=$ $\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is given by

$$
\theta=\cos ^{-1}\left(\frac{u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}}{|\mathbf{u}||\mathbf{v}|}\right)
$$

DEFINITION The dot product $\mathbf{u} \cdot \mathbf{v}$ (" \mathbf{u} dot \mathbf{v} ") of vectors $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} .
$$

In the notation of the dot product, the angle between two vectors u and v is

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}\right) \Longrightarrow \mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta
$$

Note:

Since $\mathbf{i}=\langle 1,0,0\rangle, \mathbf{j}=\langle 0,1,0\rangle$, and $\mathbf{k}=\langle 0,0,1\rangle$, we see from (2) that

$$
\mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{i}=0, \quad \mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{j}=0, \quad \text { and } \quad \mathbf{k} \cdot \mathbf{i}=\mathbf{i} \cdot \mathbf{k}=0 .
$$

Similarly, by (2)

$$
\mathbf{i} \cdot \mathbf{i}=1, \quad \mathbf{j} \cdot \mathbf{j}=1, \quad \text { and } \quad \mathbf{k} \cdot \mathbf{k}=1
$$

EXAMPLE 1

(a) $\langle 1,-2,-1\rangle \cdot\langle-6,2,-3\rangle=(1)(-6)+(-2)(2)+(-1)(-3)$

$$
=-6-4+3=-7
$$

(b) $\left(\frac{1}{2} \mathbf{i}+3 \mathbf{j}+\mathbf{k}\right) \cdot(4 \mathbf{i}-\mathbf{j}+2 \mathbf{k})=\left(\frac{1}{2}\right)(4)+(3)(-1)+(1)(2)=1$

EXAMPLE 2 Find the angle between $\mathbf{u}=\mathbf{i}-2 \mathbf{j}-2 \mathbf{k}$ and $\mathbf{v}=6 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$.
Solution We use the formula above:

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =(1)(6)+(-2)(3)+(-2)(2)=6-6-4=-4 \\
|\mathbf{u}| & =\sqrt{(1)^{2}+(-2)^{2}+(-2)^{2}}=\sqrt{9}=3 \\
|\mathbf{v}| & =\sqrt{(6)^{2}+(3)^{2}+(2)^{2}}=\sqrt{49}=7 \\
\theta & =\cos ^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}\right)=\cos ^{-1}\left(\frac{-4}{(3)(7)}\right) \approx 1.76 \text { radians }
\end{aligned}
$$

Example 3 Find the angle θ in the triangle $A B C$ determined by the vertices $A=(0,0)$, $B=(3,5)$, and $C=(5,2)$, as shown in figure below.

Solution The angle θ is the angle between the vectors $\overrightarrow{C A}$ and $\overrightarrow{C B}$. The component forms of these two vectors are

$$
\overrightarrow{C A}=\langle-5,-2\rangle \quad \text { and } \quad \overrightarrow{C B}=\langle-2,3\rangle .
$$

First we calculate the dot product and magnitudes of these two vectors.

$$
\begin{aligned}
\stackrel{\rightharpoonup}{C A} \cdot \stackrel{\rightharpoonup}{C B} & =(-5)(-2)+(-2)(3)=4 \\
|\overrightarrow{C A}| & =\sqrt{(-5)^{2}+(-2)^{2}}=\sqrt{29} \\
|\overrightarrow{C B}| & =\sqrt{(-2)^{2}+(3)^{2}}=\sqrt{13}
\end{aligned}
$$

Then applying the angle formula, we have

$$
\begin{aligned}
\theta & =\cos ^{-1}\left(\frac{\overrightarrow{C A} \cdot \overrightarrow{C B}}{|\overrightarrow{C A}||\overrightarrow{C B}|}\right) \\
& =\cos ^{-1}\left(\frac{4}{(\sqrt{29})(\sqrt{13})}\right) \\
& \approx 78.1^{\circ} \quad \text { or } \quad 1.36 \text { radians. }
\end{aligned}
$$

Perpendicular (Orthogonal) Vectors

Vectors \mathbf{u} and \mathbf{v} are orthogonal (or perpendicular) if and only if $\mathbf{u} \cdot \mathbf{v}=0$.
EXAMPLE 4 To determine if two vectors are orthogonal, calculate their dot product.
(a) $\mathbf{u}=\langle 3,-2\rangle$ and $\mathbf{v}=\langle 4,6\rangle$ are orthogonal because $\mathbf{u} \cdot \mathbf{v}=(3)(4)+(-2)(6)=0$.
(b) $\mathbf{u}=3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $\mathbf{v}=2 \mathbf{j}+4 \mathbf{k}$ are orthogonal because $\mathbf{u} \cdot \mathbf{v}=(3)(0)+$ $(-2)(2)+(1)(4)=0$.
(c) $\mathbf{0}$ is orthogonal to every vector \mathbf{u} since

$$
\begin{aligned}
\mathbf{0} \cdot \mathbf{u} & =\langle 0,0,0\rangle \cdot\left\langle u_{1}, u_{2}, u_{3}\right\rangle \\
& =(0)\left(u_{1}\right)+(0)\left(u_{2}\right)+(0)\left(u_{3}\right) \\
& =0 .
\end{aligned}
$$

Properties of the Dot Product

If \mathbf{u}, \mathbf{v}, and \mathbf{w} are any vectors and c is a scalar, then

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})=c(\mathbf{u} \cdot \mathbf{v})$
3. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
4. $\mathbf{u} \cdot \mathbf{u}=|\mathbf{u}|^{2}$
5. $\mathbf{0} \cdot \mathbf{u}=0$.

2.6 Vector projection

The vector projection of \mathbf{u} onto \mathbf{v} is the vector

$$
\begin{equation*}
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}}\right) \mathbf{v} \tag{1}
\end{equation*}
$$

The scalar component of \mathbf{u} in the direction of \mathbf{v} is the scalar

$$
\begin{equation*}
|\mathbf{u}| \cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}=\mathbf{u} \cdot \frac{\mathbf{v}}{|\mathbf{v}|} \tag{2}
\end{equation*}
$$

$$
\text { Length }=|\mathbf{u}| \cos \theta
$$

(a)

Length $=-|\mathbf{u}| \cos \theta$

(b)

The length of $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ is (a) $|\mathbf{u}| \cos \theta$ if $\cos \theta \geq 0$ and (b) $-|\mathbf{u}| \cos \theta$ if $\cos \theta<0$.
EXAMPLE 5 Find the vector projection of $\mathbf{u}=6 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$ onto $\mathbf{v}=\mathbf{i}-2 \mathbf{j}-2 \mathbf{k}$ and the scalar component of \mathbf{u} in the direction of \mathbf{v}.

Solution We find $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ from Equation (1):

$$
\begin{aligned}
\operatorname{proj}_{\mathbf{v}} \mathbf{u} & =\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}=\frac{6-6-4}{1+4+4}(\mathbf{i}-2 \mathbf{j}-2 \mathbf{k}) \\
& =-\frac{4}{9}(\mathbf{i}-2 \mathbf{j}-2 \mathbf{k})=-\frac{4}{9} \mathbf{i}+\frac{8}{9} \mathbf{j}+\frac{8}{9} \mathbf{k} .
\end{aligned}
$$

We find the scalar component of \mathbf{u} in the direction of \mathbf{v} from Equation (2):

$$
\begin{aligned}
|\mathbf{u}| \cos \theta & =\mathbf{u} \cdot \frac{\mathbf{v}}{|\mathbf{v}|}=(6 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}) \cdot\left(\frac{1}{3} \mathbf{i}-\frac{2}{3} \mathbf{j}-\frac{2}{3} \mathbf{k}\right) \\
& =2-2-\frac{4}{3}=-\frac{4}{3}
\end{aligned}
$$

Exercises 12.3

Dot Product and Projections

In Exercises 1-8, find
a. $\mathbf{v} \cdot \mathbf{u},|\mathbf{v}|,|\mathbf{u}|$
b. the cosine of the angle between \mathbf{v} and \mathbf{u}
c. the scalar component of \mathbf{u} in the direction of \mathbf{v}
d. the vector $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.

1. $\mathbf{v}=2 \mathbf{i}-4 \mathbf{j}+\sqrt{5} \mathbf{k}, \quad \mathbf{u}=-2 \mathbf{i}+4 \mathbf{j}-\sqrt{5} \mathbf{k}$
2. $\mathbf{v}=(3 / 5) \mathbf{i}+(4 / 5) \mathbf{k}, \quad \mathbf{u}=5 \mathbf{i}+12 \mathbf{j}$
3. $\mathbf{v}=10 \mathbf{i}+11 \mathbf{j}-2 \mathbf{k}, \quad \mathbf{u}=3 \mathbf{j}+4 \mathbf{k}$
4. $\mathbf{v}=2 \mathbf{i}+10 \mathbf{j}-11 \mathbf{k}, \quad \mathbf{u}=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$
5. $\mathbf{v}=5 \mathbf{j}-3 \mathbf{k}, \quad \mathbf{u}=\mathbf{i}+\mathbf{j}+\mathbf{k}$
6. $\mathbf{v}=-\mathbf{i}+\mathbf{j}, \quad \mathbf{u}=\sqrt{2} \mathbf{i}+\sqrt{3} \mathbf{j}+2 \mathbf{k}$
7. $\mathbf{v}=5 \mathbf{i}+\mathbf{j}, \quad \mathbf{u}=2 \mathbf{i}+\sqrt{17} \mathbf{j}$
8. $\mathbf{v}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}\right\rangle, \quad \mathbf{u}=\left\langle\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{3}}\right\rangle$

Angle Between Vectors

| Find the angles between the vectors in Exercises 9-12 to the nearest hundredth of a radian.
9. $\mathbf{u}=2 \mathbf{i}+\mathbf{j}, \quad \mathbf{v}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$
10. $\mathbf{u}=2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}, \quad \mathbf{v}=3 \mathbf{i}+4 \mathbf{k}$
11. $\mathbf{u}=\sqrt{3} \mathbf{i}-7 \mathbf{j}, \quad \mathbf{v}=\sqrt{3} \mathbf{i}+\mathbf{j}-2 \mathbf{k}$
12. $\mathbf{u}=\mathbf{i}+\sqrt{2} \mathbf{j}-\sqrt{2} \mathbf{k}, \quad \mathbf{v}=-\mathbf{i}+\mathbf{j}+\mathbf{k}$
13. Triangle Find the measures of the angles of the triangle whose vertices are $A=(-1,0), B=(2,1)$, and $C=(1,-2)$.
14. Rectangle Find the measures of the angles between the diagonals of the rectangle whose vertices are $A=(1,0), B=(0,3)$, $C=(3,4)$, and $D=(4,1)$.

Miscellaneous Problems:

1- Determine a scalar c so that the given vectors are orthogonal.
(a) $\mathbf{a}=2 \mathbf{i}-c \mathbf{j}+3 \mathbf{k}, \mathbf{b}=3 \mathbf{i}+2 \mathbf{j}+4 \mathbf{k}$
(b) $\mathbf{a}=\left\langle c, \frac{1}{2}, c\right\rangle, \mathbf{b}=\langle-3,4, c\rangle$

2- Determine a scalar c so that the angle between $\mathbf{a}=\mathbf{i}+c \mathbf{j}$ and $\mathbf{b}=\mathbf{i}+\mathbf{j}$ is 45°.
3- Find a vector \mathbf{b} for which $|\mathbf{b}|=1 / 2$ that is parallel to $\mathbf{a}=\langle 6,3,2\rangle$ but has the opposite direction.

4- Find a vector $\mathbf{v}=\left\langle x_{1}, y_{1}, 1\right\rangle$ that is orthogonal to both $\mathbf{a}=\langle 3,1,-1\rangle$ and $\mathbf{b}=\langle-3,2,2\rangle$.

2.7 The Cross Product of Two Vectors in Space

If \mathbf{u} and \mathbf{v} are nonzero and not parallel vectors, then the cross product $u \times v$ (" u cross v ") is the vector defined as follows.

DEFINITION

$$
\mathbf{u} \times \mathbf{v}=(|\mathbf{u}||\mathbf{v}| \sin \theta) \mathbf{n}
$$

where \mathbf{n} is a unit vector perpendicular to the plane by the right-hand rule.
Unlike the dot product, the cross product is a vector.
For this reason, it's also called the vector product of \mathbf{u} and \mathbf{v}, and applies only to vectors in space.

The vector $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v}.

Parallel Vectors

Nonzero vectors \mathbf{u} and \mathbf{v} are parallel if and only if $\mathbf{u} \times \mathbf{v}=\mathbf{0}$.

Properties of the Cross Product

If \mathbf{u}, \mathbf{v}, and \mathbf{w} are any vectors and r, s are scalars, then

1. $(r \mathbf{u}) \times(s \mathbf{v})=(r s)(\mathbf{u} \times \mathbf{v})$
2. $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$
3. $\mathbf{v} \times \mathbf{u}=-(\mathbf{u} \times \mathbf{v})$
4. $(\mathbf{v}+\mathbf{w}) \times \mathbf{u}=\mathbf{v} \times \mathbf{u}+\mathbf{w} \times \mathbf{u}$
5. $\mathbf{0} \times \mathbf{u}=\mathbf{0}$
6. $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$

$$
\begin{aligned}
\mathbf{i} \times \mathbf{j}=-(\mathbf{j} \times \mathbf{i})=\mathbf{k} \\
\mathbf{j} \times \mathbf{k}=-(\mathbf{k} \times \mathbf{j})=\mathbf{i} \\
\mathbf{k} \times \mathbf{i}=-(\mathbf{i} \times \mathbf{k})=\mathbf{j} \\
\mathbf{i} \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=\mathbf{0} .
\end{aligned}
$$

The area of the parallelogram determined by \mathbf{u} and $\mathbf{v},|\mathbf{u}|$ being the base of the parallelogram and $|\mathrm{v}||\sin \theta|$ the height, is $|\mathbf{u} \times \mathbf{v}|$.

$$
|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}||\sin \theta||\mathbf{n}|=|\mathbf{u}||\mathbf{v}| \sin \theta
$$

Area $=$ base \cdot height
$=|\mathbf{u}| \cdot|\mathbf{v}||\sin \theta|$ $=|\mathbf{u} \times \mathbf{v}|$

Calculating the Cross Product as a Determinant
If $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}$ and $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$, then

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| .
$$

EXAMPLE 1 Find $\mathbf{u} \times \mathbf{v}$ and $\mathbf{v} \times \mathbf{u}$ if $\mathbf{u}=2 \mathbf{i}+\mathbf{j}+\mathbf{k}$ and $\mathbf{v}=-4 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$.
Solution

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 1 & 1 \\
-4 & 3 & 1
\end{array}\right|=\left|\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
2 & 1 \\
-4 & 1
\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}
2 & 1 \\
-4 & 3
\end{array}\right| \mathbf{k} \\
& =-2 \mathbf{i}-6 \mathbf{j}+10 \mathbf{k} \\
\mathbf{v} \times \mathbf{u} & =-(\mathbf{u} \times \mathbf{v})=2 \mathbf{i}+6 \mathbf{j}-10 \mathbf{k}
\end{aligned}
$$

EXAMPLE 2 Find a vector perpendicular to the plane of $P(1,-1,0), Q(2,1,-1)$, and $R(-1,1,2)$.

Solution The vector $\overrightarrow{P Q} \times \overrightarrow{P R}$ is perpendicular to the plane because it is perpendicular to both vectors. In terms of components,

$$
\begin{aligned}
\overrightarrow{P Q} & =(2-1) \mathbf{i}+(1+1) \mathbf{j}+(-1-0) \mathbf{k}=\mathbf{i}+2 \mathbf{j}-\mathbf{k} \\
\overrightarrow{P R} & =(-1-1) \mathbf{i}+(1+1) \mathbf{j}+(2-0) \mathbf{k}=-2 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k} \\
\overrightarrow{P Q} \times \overrightarrow{P R} & =\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & -1 \\
-2 & 2 & 2
\end{array}\right|=\left|\begin{array}{rr}
2 & -1 \\
2 & 2
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
1 & -1 \\
-2 & 2
\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}
1 & 2 \\
-2 & 2
\end{array}\right| \mathbf{k} \\
& =6 \mathbf{i}+6 \mathbf{k} .
\end{aligned}
$$

EXAMPLE 3 Find the area of the triangle with vertices $P(1,-1,0), Q(2,1,-1)$, and $R(-1,1,2)$.

Solution The area of the parallelogram determined by P, Q, and R is

$$
\begin{aligned}
|\stackrel{\rightharpoonup}{P Q} \times \stackrel{\rightharpoonup}{P R}| & =|6 \mathbf{i}+6 \mathbf{k}| \\
& =\sqrt{(6)^{2}+(6)^{2}}=\sqrt{2 \cdot 36}=6 \sqrt{2}
\end{aligned}
$$

The triangle's area is half of this, or $3 \sqrt{2}$.

EXAMPLE 4 Find a unit vector perpendicular to the plane of $P(1,-1,0), Q(2,1,-1)$, and $R(-1,1,2)$.

Solution Since $\overrightarrow{P Q} \times \overrightarrow{P R}$ is perpendicular to the plane, its direction \mathbf{n} is a unit vector perpendicular to the plane. Taking values from Examples 2 and 3, we have

$$
\mathbf{n}=\frac{\stackrel{\rightharpoonup}{P Q} \times \stackrel{\rightharpoonup}{P R}}{|\stackrel{\rightharpoonup}{P Q} \times \stackrel{\rightharpoonup}{P R}|}=\frac{6 \mathbf{i}+6 \mathbf{k}}{6 \sqrt{2}}=\frac{1}{\sqrt{2}} \mathbf{i}+\frac{1}{\sqrt{2}} \mathbf{k}
$$

Cross Product Calculations
In Exercises 1-8, find the length and direction (when defined) of $\mathbf{u} \times \mathbf{v}$ and $\mathbf{v} \times \mathbf{u}$.

1. $\mathbf{u}=2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}, \quad \mathbf{v}=\mathbf{i}-\mathbf{k}$
2. $\mathbf{u}=2 \mathbf{i}+3 \mathbf{j}, \quad \mathbf{v}=-\mathbf{i}+\mathbf{j}$
3. $\mathbf{u}=2 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k}, \quad \mathbf{v}=-\mathbf{i}+\mathbf{j}-2 \mathbf{k}$
4. $\mathbf{u}=\mathbf{i}+\mathbf{j}-\mathbf{k}, \quad \mathbf{v}=\mathbf{0}$
5. $\mathbf{u}=2 \mathbf{i}, \quad \mathbf{v}=-3 \mathbf{j}$
6. $\mathbf{u}=\mathbf{i} \times \mathbf{j}, \quad \mathbf{v}=\mathbf{j} \times \mathbf{k}$
7. $\mathbf{u}=-8 \mathbf{i}-2 \mathbf{j}-4 \mathbf{k}, \quad \mathbf{v}=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$
8. $\mathbf{u}=\frac{3}{2} \mathbf{i}-\frac{1}{2} \mathbf{j}+\mathbf{k}, \quad \mathbf{v}=\mathbf{i}+\mathbf{j}+2 \mathbf{k}$

In Exercises 9-14, sketch the coordinate axes and then include the vectors \mathbf{u}, \mathbf{v}, and $\mathbf{u} \times \mathbf{v}$ as vectors starting at the origin.
9. $\mathbf{u}=\mathbf{i}, \quad \mathbf{v}=\mathbf{j}$
10. $\mathbf{u}=\mathbf{i}-\mathbf{k}, \quad \mathbf{v}=\mathbf{j}$
11. $\mathbf{u}=\mathbf{i}-\mathbf{k}, \quad \mathbf{v}=\mathbf{j}+\mathbf{k}$
12. $\mathbf{u}=2 \mathbf{i}-\mathbf{j}, \quad \mathbf{v}=\mathbf{i}+2 \mathbf{j}$
13. $\mathbf{u}=\mathbf{i}+\mathbf{j}, \quad \mathbf{v}=\mathbf{i}-\mathbf{j}$
14. $\mathbf{u}=\mathbf{j}+2 \mathbf{k}, \quad \mathbf{v}=\mathbf{i}$

Triangles in Space

In Exercises 15-18,
a. Find the area of the triangle determined by the points P, Q, and R.
b. Find a unit vector perpendicular to plane $P Q R$.
15. $P(1,-1,2), \quad Q(2,0,-1), \quad R(0,2,1)$
16. $P(1,1,1), Q(2,1,3), \quad R(3,-1,1)$
17. $P(2,-2,1), \quad Q(3,-1,2), \quad R(3,-1,1)$
18. $P(-2,2,0), Q(0,1,-1), \quad R(-1,2,-2)$

Triple Scalar Products

In Exercises 19-22, verify that $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u}=$ $(\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v}$ and find the volume of the parallelepiped (box) determined by \mathbf{u}, \mathbf{v}, and \mathbf{w}.

	\mathbf{u}	\mathbf{v}
\mathbf{w}		
19. $2 \mathbf{i}$	$2 \mathbf{j}$	$2 \mathbf{k}$
20. $\mathbf{i}-\mathbf{j}+\mathbf{k}$	$2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$	$-\mathbf{i}+2 \mathbf{j}-\mathbf{k}$
21. $2 \mathbf{i}+\mathbf{j}$	$2 \mathbf{i}-\mathbf{j}+\mathbf{k}$	$\mathbf{i}+2 \mathbf{k}$
22. $\mathbf{i}+\mathbf{j}-2 \mathbf{k}$	$-\mathbf{i}-\mathbf{k}$	$2 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$

Theory and Examples
23. Parallel and perpendicular vectors Let $\mathbf{u}=5 \mathbf{i}-\mathbf{j}+\mathbf{k}, \mathbf{v}=$ $\mathbf{j}-5 \mathbf{k}, \mathbf{w}=-15 \mathbf{i}+3 \mathbf{j}-3 \mathbf{k}$. Which vectors, if any, are (a) perpendicular? (b) Parallel? Give reasons for your answers.
24. Parallel and perpendicular vectors Let $\mathbf{u}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$, $\mathbf{v}=-\mathbf{i}+\mathbf{j}+\mathbf{k}, \quad \mathbf{w}=\mathbf{i}+\mathbf{k}, \quad \mathbf{r}=-(\pi / 2) \mathbf{i}-\pi \mathbf{j}+(\pi / 2) \mathbf{k}$. Which vectors, if any, are (a) perpendicular? (b) Parallel? Give reasons for your answers.

Area of a Parallelogram

Find the areas of the parallelograms whose vertices are given in Exercises 35-40.
35. $A(1,0), \quad B(0,1), \quad C(-1,0), \quad D(0,-1)$
36. $A(0,0), \quad B(7,3), \quad C(9,8), \quad D(2,5)$
37. $A(-1,2), \quad B(2,0), \quad C(7,1), \quad D(4,3)$
38. $A(-6,0), \quad B(1,-4), \quad C(3,1), \quad D(-4,5)$
39. $A(0,0,0), \quad B(3,2,4), \quad C(5,1,4), \quad D(2,-1,0)$
40. $A(1,0,-1), \quad B(1,7,2), \quad C(2,4,-1), \quad D(0,3,2)$

Area of a Triangle

Find the areas of the triangles whose vertices are given in Exercises 41-47.
41. $A(0,0), \quad B(-2,3), \quad C(3,1)$
42. $A(-1,-1), \quad B(3,3), \quad C(2,1)$
43. $A(-5,3), \quad B(1,-2), \quad C(6,-2)$
44. $A(-6,0), \quad B(10,-5), \quad C(-2,4)$
45. $A(1,0,0), \quad B(0,2,0), \quad C(0,0,-1)$
46. $A(0,0,0), \quad B(-1,1,-1), \quad C(3,0,3)$
47. $A(1,-1,1), \quad B(0,1,1), \quad C(1,0,-1)$
48. Find the volume of a parallelepiped if four of its eight vertices are $A(0,0,0)$, $B(1,2,0), C(0,-3,2)$, and $D(3,-4,5)$.

2.8 Lines and Line Segments in Space

In the plane, a line is determined by a point and a number giving the slope of the line. In space a line is determined by a point and a vector giving the direction of the line. A vector equation for the line L through $\boldsymbol{P}_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel to v is

$$
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}, \quad-\infty<t<\infty
$$

where \mathbf{r} is the position vector of a point $P(x, y, z)$ on L and \mathbf{r}_{0} is the position vector of $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$.

The standard parametrization of the line through $\boldsymbol{P}_{\mathbf{0}}\left(\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{y}_{\mathbf{0}}, \boldsymbol{z}_{\mathbf{0}}\right)$ parallel to $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$ is $x=x_{0}+t v_{1}, \quad y=y_{0}+t v_{2}, \quad z=z_{0}+t v_{3}, \quad-\infty<t<\infty$

EXAMPLE 1 Find parametric equations for the line through ($-2,0,4$) parallel to $\mathbf{v}=2 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$

Solution With $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ equal to $(-2,0,4)$ and $v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$ equal to $2 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$
$x=-2+2 t, \quad y=4 t, \quad z=4-2 t$.

EXAMPLE 2 Find parametric equations for the line through $P(-3,2,-3)$ and $Q(1,-1,4)$.

Solution The vector

$$
\begin{aligned}
\stackrel{\rightharpoonup}{P Q} & =(1-(-3)) \mathbf{i}+(-1-2) \mathbf{j}+(4-(-3)) \mathbf{k} \\
& =4 \mathbf{i}-3 \mathbf{j}+7 \mathbf{k}
\end{aligned}
$$

Then, with $\left(x_{0}, y_{0}, z_{0}\right)=(-3,2,-3)$, the parametric equations are

$$
x=-3+4 t, \quad y=2-3 t, \quad z=-3+7 t .
$$

We could have chosen $Q(1,-1,4)$ as the "base point" and written

$$
x=1+4 t, \quad y=-1-3 t, \quad z=4+7 t .
$$

These equations serve as well as the first; they simply place you at a different point on the line for a given value of t.

Parametrization a line segment joining two points

To parametrize a line segment joining two points, we first parametrize the line through the points. We then find the t-values for the endpoints and restrict t to lie in the closed interval bounded by these values. The line equations together with this added restriction parametrize the segment.

EXAMPLE 3 Parametrize the line segment joining the points $P(-3,2,-3)$ and

 $Q(1,-1,4)$Solution We begin with equations for the line through P and Q, taking them, in this case, from Example 2:

$$
x=-3+4 t, \quad y=2-3 t, \quad z=-3+7 t .
$$

We observe that the point

$$
(x, y, z)=(-3+4 t, 2-3 t,-3+7 t)
$$

on the line passes through $P(-3,2,-3)$ at $t=0$ and $Q(1,-1,4)$ at $t=1$. We add the restriction $0 \leq t \leq 1$ to parametrize the segment:

$$
x=-3+4 t, \quad y=2-3 t, \quad z=-3+7 t, \quad 0 \leq t \leq 1 .
$$

The Distance from a Point to a Line in Space

Distance from a point S to a line through point P parallel to v is:

$$
d=\frac{|\stackrel{\rightharpoonup}{P S} \times \mathbf{v}|}{|\mathbf{v}|}
$$

EXAMPLE 5 Find the distance from the point $S(1,1,5)$ to the line

$$
L: \quad x=1+t, \quad y=3-t, \quad z=2 t .
$$

Solution We see from the equations for L that L passes through $P(1,3,0)$ parallel to $\mathbf{v}=\mathbf{i}-\mathbf{j}+2 \mathbf{k}$. With

$$
\begin{gathered}
\overrightarrow{P S}=(1-1) \mathbf{i}+(1-3) \mathbf{j}+(5-0) \mathbf{k}=-2 \mathbf{j}+5 \mathbf{k} \\
\overrightarrow{P S} \times \mathbf{v}=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & -2 & 5 \\
1 & -1 & 2
\end{array}\right|=\mathbf{i}+5 \mathbf{j}+2 \mathbf{k}, \\
d=\frac{|\overrightarrow{P S} \times \mathbf{v}|}{|\mathbf{v}|}=\frac{\sqrt{1+25+4}}{\sqrt{1+1+4}}=\frac{\sqrt{30}}{\sqrt{6}}=\sqrt{5} .
\end{gathered}
$$

An Equation for a Plane in Space

The plane through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ normal to $\mathbf{n}=A \mathbf{i}+B \mathbf{j}+C \mathbf{k}$ has
Vector equation:
Component equation:
Component equation simplified: $A x+B y+C z=D, \quad$ where

$$
D=A x_{0}+B y_{0}+C z_{0}
$$

EXAMPLE 6 Find an equation for the plane through $P_{0}(-3,0,7)$ perpendicular to $\mathbf{n}=5 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$.

Solution The component equation is

$$
5(x-(-3))+2(y-0)+(-1)(z-7)=0 .
$$

Simplifying, we obtain

$$
\begin{aligned}
5 x+15+2 y-z+7 & =0 \\
5 x+2 y-z & =-22
\end{aligned}
$$

EXAMPLE 7 Find an equation for the plane through $A(0,0,1), B(2,0,0)$, and $C(0,3,0)$.
Solution We find a vector normal to the plane and use it with one of the points (it does not matter which) to write an equation for the plane.

The cross product

$$
\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 0 & -1 \\
0 & 3 & -1
\end{array}\right|=3 \mathbf{i}+2 \mathbf{j}+6 \mathbf{k}
$$

is normal to the plane. We substitute the components of this vector and the coordinates of $A(0,0,1)$ into the component form of the equation to obtain

$$
\begin{aligned}
3(x-0)+2(y-0)+6(z-1) & =0 \\
3 x+2 y+6 z & =6 .
\end{aligned}
$$

Lines of Intersection

Two planes are parallel if and only if their normals are parallel, or $\boldsymbol{n}_{1}=k \boldsymbol{n}_{2}$ for some scalar k . Two planes that are not parallel intersect in a line.

EXAMPLE 8 Find a vector parallel to the line of intersection of the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$.

Solution: The line of intersection of two planes is perpendicular to both planes' normal vectors \boldsymbol{n}_{1} and \boldsymbol{n}_{2} and therefore parallel to $\boldsymbol{n}_{1} \times \boldsymbol{n}_{2}$. Turning this around, $\boldsymbol{n}_{1} \times \boldsymbol{n}_{2}$ is a vector parallel to the planes' line of intersection. In our case,

$$
\mathbf{n}_{1} \times \mathbf{n}_{2}=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & -6 & -2 \\
2 & 1 & -2
\end{array}\right|=14 \mathbf{i}+2 \mathbf{j}+15 \mathbf{k} .
$$

EXAMPLE 9 Find parametric equations for the line in which the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$ intersect.

Solution We find a vector parallel to the line and a point on the line and use
Example 8 identifies $\mathbf{v}=14 \mathbf{i}+2 \mathbf{j}+15 \mathbf{k}$ as a vector parallel to the line. To find a point on the line, we can take any point common to the two planes. Substituting $z=0$ in the plane equations and solving for x and y simultaneously identifies one of these points as $(3,-1,0)$. The line is

$$
x=3+14 t, \quad y=-1+2 t, \quad z=15 t
$$

The choice $z=0$ is arbitrary and we could have chosen $z=1$ or $z=-1$ just as well. Or we could have let $x=0$ and solved for y and z. The different choices would simply give different parametrizations of the same line.

EXAMPLE 10 Find the point where the line

$$
x=\frac{8}{3}+2 t, \quad y=-2 t, \quad z=1+t
$$

intersects the plane $3 x+2 y+6 z=6$.

Solution The point

$$
\left(\frac{8}{3}+2 t,-2 t, 1+t\right)
$$

lies in the plane if its coordinates satisfy the equation of the plane, that is, if

$$
\begin{aligned}
3\left(\frac{8}{3}+2 t\right)+2(-2 t)+6(1+t) & =6 \\
8+6 t-4 t+6+6 t & =6 \\
8 t & =-8 \\
t & =-1
\end{aligned}
$$

The point of intersection is

$$
\left.(x, y, z)\right|_{t=-1}=\left(\frac{8}{3}-2,2,1-1\right)=\left(\frac{2}{3}, 2,0\right)
$$

Lines and Line Segments
Find parametric equations for the lines in Exercises 1-12.

1. The line through the point $P(3,-4,-1)$ parallel to the vector $\mathbf{i}+\mathbf{j}+\mathbf{k}$
2. The line through $P(1,2,-1)$ and $Q(-1,0,1)$
3. The line through $P(-2,0,3)$ and $Q(3,5,-2)$
4. The line through $P(1,2,0)$ and $Q(1,1,-1)$
5. The line through the origin parallel to the vector $2 \mathbf{j}+\mathbf{k}$
6. The line through the point $(3,-2,1)$ parallel to the line $x=1+2 t, y=2-t, z=3 t$
7. The line through $(1,1,1)$ parallel to the z-axis
8. The line through $(2,4,5)$ perpendicular to the plane $3 x+7 y-5 z=21$
9. The line through $(0,-7,0)$ perpendicular to the plane $x+2 y+2 z=13$
10. The line through $(2,3,0)$ perpendicular to the vectors $\mathbf{u}=\mathbf{i}+$ $2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{v}=3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k}$
11. The x-axis
12. The z-axis

Find parametrizations for the line segments joining the points in Exercises 13-20. Draw coordinate axes and sketch each segment, indicating the direction of increasing t for your parametrization.
13. $(0,0,0)$, $(1,1,3 / 2)$
14. $(0,0,0)$,
$(1,0,0)$
15. $(1,0,0),(1,1,0)$
16. $(1,1,0),(1,1,1)$
17. $(0,1,1),(0,-1,1)$
18. $(0,2,0)$,
$(3,0,0)$
19. $(2,0,2)$,
$(0,2,0)$
20. $(1,0,-1)$,
$(0,3,0)$

Planes
Find equations for the planes in Exercises 21-26.
21. The plane through $P_{0}(0,2,-1)$ normal to $\mathbf{n}=3 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$
22. The plane through $(1,-1,3)$ parallel to the plane

$$
3 x+y+z=7
$$

23. The plane through $(1,1,-1),(2,0,2)$, and $(0,-2,1)$
24. The plane through $(2,4,5),(1,5,7)$, and $(-1,6,8)$
25. The plane through $P_{0}(2,4,5)$ perpendicular to the line

$$
x=5+t, \quad y=1+3 t, \quad z=4 t
$$

26. The plane through $A(1,-2,1)$ perpendicular to the vector from the origin to A
27. Find the point of intersection of the lines $x=2 t+1, y=3 t+2$, $z=4 t+3$, and $x=s+2, y=2 s+4, z=-4 s-1$, and then find the plane determined by these lines.
28. Find the point of intersection of the lines $x=t, y=-t+2$, $z=t+1$, and $x=2 s+2, y=s+3, z=5 s+6$, and then find the plane determined by these lines.

In Exercises 29 and 30, find the plane determined by the intersecting lines.
29. $L 1: x=-1+t, \quad y=2+t, \quad z=1-t ; \quad-\infty<t<\infty$
$L 2: x=1-4 s, \quad y=1+2 s, \quad z=2-2 s ; \quad-\infty<s<\infty$
30. $L 1: x=t, \quad y=3-3 t, \quad z=-2-t ; \quad-\infty<t<\infty$
$L 2: x=1+s, \quad y=4+s, \quad z=-1+s ; \quad-\infty<s<\infty$
31. Find a plane through $P_{0}(2,1,-1)$ and perpendicular to the line of intersection of the planes $2 x+y-z=3, x+2 y+z=2$.
32. Find a plane through the points $P_{1}(1,2,3), P_{2}(3,2,1)$ and perpendicular to the plane $4 x-y+2 z=7$.

Intersecting Lines and Planes
In Exercises 53-56, find the point in which the line meets the plane.
53. $x=1-t, \quad y=3 t, \quad z=1+t ; \quad 2 x-y+3 z=6$
54. $x=2, \quad y=3+2 t, \quad z=-2-2 t ; \quad 6 x+3 y-4 z=-12$
55. $x=1+2 t, \quad y=1+5 t, \quad z=3 t ; \quad x+y+z=2$
56. $x=-1+3 t, \quad y=-2, \quad z=5 t ; \quad 2 x-3 z=7$

Find parametrizations for the lines in which the planes in Exercises 57-60 intersect.
57. $x+y+z=1, \quad x+y=2$
58. $3 x-6 y-2 z=3, \quad 2 x+y-2 z=2$
59. $x-2 y+4 z=2, \quad x+y-2 z=5$
60. $5 x-2 y=11, \quad 4 y-5 z=-17$

Given two lines in space, either they are parallel, or they intersect, or they are skew (imagine, for example, the flight paths of two planes in the sky). Exercises 61 and 62 each give three lines. In each exercise, determine whether the lines, taken two at a time, are parallel, intersect, or are skew. If they intersect, find the point of intersection.
61. $L 1: x=3+2 t, \quad y=-1+4 t, \quad z=2-t ; \quad-\infty<t<\infty$ L2: $x=1+4 s, y=1+2 s, z=-3+4 s ; \quad-\infty<s<\infty$ L3: $x=3+2 r, y=2+r, z=-2+2 r ; \quad-\infty<r<\infty$
62. $L 1: x=1+2 t, \quad y=-1-t, \quad z=3 t ; \quad-\infty<t<\infty$

L2: $x=2-s, \quad y=3 s, \quad z=1+s ; \quad-\infty<s<\infty$
L3: $x=5+2 r, \quad y=1-r, \quad z=8+3 r ; \quad-\infty<r<\infty$

Theory and Examples

63. Use Equations (3) to generate a parametrization of the line through $P(2,-4,7)$ parallel to $\mathbf{v}_{1}=2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$. Then generate another parametrization of the line using the point $P_{2}(-2,-2,1)$ and the vector $\mathbf{v}_{2}=-\mathbf{i}+(1 / 2) \mathbf{j}-(3 / 2) \mathbf{k}$.
64. Use the component form to generate an equation for the plane through $P_{1}(4,1,5)$ normal to $\mathbf{n}_{1}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$. Then generate another equation for the same plane using the point $P_{2}(3,-2,0)$ and the normal vector $\mathbf{n}_{2}=-\sqrt{2} \mathbf{i}+2 \sqrt{2} \mathbf{j}-\sqrt{2} \mathbf{k}$.
65. Find the points in which the line $x=1+2 t, y=-1-t$, $z=3 t$ meets the coordinate planes. Describe the reasoning behind your answer.
66. Find equations for the line in the plane $z=3$ that makes an angle of $\pi / 6 \mathrm{rad}$ with \mathbf{i} and an angle of $\pi / 3 \mathrm{rad}$ with \mathbf{j}. Describe the reasoning behind your answer.
67. Is the line $x=1-2 t, y=2+5 t, z=-3 t$ parallel to the plane $2 x+y-z=8$? Give reasons for your answer.
